Cerebral Hemispheres 2
NEUROSCIENTIFICALLY CHALLENGED

NEUROSCIENCE MADE SIMPLER

Know Your Brain: Alzheimer's Disease


Background

Auguste Deter, the subject of Alois Alzheimer’s case study describing what would come to be known as Alzheimer’s disease.

In 1906, at a meeting of psychiatrists in Germany, Alois Alzheimer gave a lecture in which he detailed the unusual case of Auguste Deter. Alzheimer had encountered Deter about five years prior, when he was working as an assistant physician at a psychiatric institution in Frankfurt am Main in Germany. Deter had made an impression on Alzheimer because she was relatively young, but was suffering from a unique constellation of severe, dementia-like symptoms.

Deter was 51 years old when Alzheimer met her. Her most noticeable symptoms had begun in the previous year, when her behavior became alarmingly erratic. First, she began displaying uncharacteristic jealousy of her husband. Then, her memory started to deteriorate rapidly. She would easily become disoriented, and often lose touch with reality, consumed with paranoid delusions. As Alzheimer described it:

“…sometimes she thought somebody was trying to kill her and started to cry loudly…Sometimes she greets the attending physician like company…sometimes she protests loudly that he intends to cut her…Then again she is completely delirious, drags around her bedding, calls her husband and daughter and seems to suffer from auditory hallucinations. Often she screamed for many hours.”

Alzheimer was intrigued by the case. Deter seemed to be afflicted with a form of senile psychosis, which was probably a symptom of dementia. But it was rare to see dementia this severe in someone so young.

In addition to being a physician, Alzheimer was also an industrious researcher. He was intensely interested in pathological changes in the nervous system that accompanied psychiatric and neurological illnesses. Thus, when Deter died at the age of 55, Alzheimer requested her brain be sent to him for study. Upon examination, Alzheimer found the brain had suffered widespread neuronal loss and was riddled with abnormal structures (later learned to be the protein deposits discussed below).

Deter’s age, symptom profile, and neural deterioration convinced Alzheimer that she was a unique case. The psychiatrists present at his lecture on the topic didn’t seem to feel the same way, however, as there were no questions, comments, or other indications of interest following his presentation (the attendees seemed much more intrigued by the next presentation on compulsive masturbation). But little did Alzheimer know that his lecture would mark a historic moment, as only a few years later the renowned psychiatrist (and Alzheimer’s colleague) Emil Kraepelin introduced the term Alzheimer’s disease (AD) to describe an early-onset form of senile dementia.

It wasn’t until the late 1970s that researchers began to recognize that most cases of AD are not early-onset, and occur in patients over the age of 65. Today, AD is one of the greatest health concerns for people in this age group, and due to the fact that this population continues to increase in number (which is, ironically, a result of our improved ability to keep people alive longer), it is a rapidly growing problem. Today, about 1 in every 10 people over the age of 65 suffers from AD, and the number of people with AD in the United States is expected to nearly triple by the year 2050.


What are the symptoms of Alzheimer’s disease?

AD is a type of dementia, a term used to describe a condition that involves memory loss and other cognitive difficulties. There are a number of different types of dementia, however—each with its own causes and specific symptom profile. AD is just one variation.

The best-recognized sign of mental decline in AD is problems with memory. In the early stages of the disease, this often manifests as difficulties creating new memories, and problems are especially noticeable with declarative memories, or memories about information and events (as opposed to memories for how to do routine things like tie your shoes or eat with utensils, which are known as non-declarative memories). Early on, patients are typically able to maintain older memories and non-declarative memories. Over time, however, all memory can be affected, and even the most enduring memories may deteriorate.

But memory deficits are just one aspect of AD symptomatology. Patients can also experience problems with communication, and the ability to read and write may be impaired. Unpredictable mood disturbances, ranging from apathy and depression to angry outbursts, can occur. Thinking often becomes delusional, and a substantial subset of patients (up to 20%) even experience visual hallucinations.

It’s not just cognition that’s affected, though. Movement is hindered, causing patients to begin to lose mobility and have trouble performing even the simplest acts of self-care. Basic motor functions like chewing and swallowing become faulty, and incontinence eventually occurs.

In the end (if a patient survives this long), there aren’t many brain functions that haven’t been affected in some way, and patients become completely dependent on caregivers to help with even the most basic daily activities like eating and going to the bathroom. The disease is always fatal.


What happens in the brain in Alzheimer’s disease?

When Alois Alzheimer examined the brain of Auguste Deter, he noted a few distinct pathological changes. The first was that the brain had undergone significant atrophy. It appeared somewhat shrunken compared to a healthy brain.

This atrophying of the AD brain is due to the death of brain cells that occurs in the disease. AD is what is known as a neurodegenerative disease, which is a classification used to refer to diseases that cause the degeneration and death of neurons. A number of diseases fall into this category (e.g. Parkinson’s disease, amyotrophic lateral sclerosis), but AD is the most common of the group.

Alzheimer also noted unusual formations both within and surrounding neurons. He remarked that “distributed all over the cortex…there are…foci which are caused by the deposition of a special substance,” and he also mentioned “many fibrils located next to each other…they appear one by one at the surface of the cell.” Alzheimer was describing what today are the two hallmark neurological signs of AD: amyloid plaques and neurofibrillary tangles.

The first of these structures, amyloid plaques, consist of collections of small peptides (essentially a smaller version of a protein) known as amyloid beta, or Aβ, that form large clusters outside of neurons. Normally, enzymes called proteases can help to get rid of unwanted peptides and proteins in the brain. But amyloid plaques are especially resistant to degradation by proteases. Thus, they build up in the brain as the disease progresses; their presence is a defining feature of an AD brain.

Watch this 2-Minute Neuroscience video for a summary of how Alzheimer's disease affects the brain.

The other structure observed by Alzheimer, neurofibrillary tangles, also consist of abnormal deposits of proteins. In this case, the protein culprit is called tau. Tau normally plays an important role in helping to transport materials throughout the cell, but in AD it loses its normal function and clusters together in the tangles Alzheimer described. Like amyloid plaques, normal mechanisms the brain uses to remove unwanted protein deposits fail to effectively clear away neurofibrillary tangles. In fact, even after an affected neuron dies, the tangles found within it remain like a reminder of the neuron that was.

As the disease progresses, amyloid plaques and neurofibrillary tangles accumulate more and more in the brain. Thus, the appearance of these abnormal structures is correlated with the severity of the symptoms of AD. At the same time, exactly what role these structures play in the development of the disease remains unclear. For example, researchers are still unsure if amyloid plaques themselves are damaging to neurons, or if they represent an effort by the brain to sequester toxic Aβ peptides to protect neurons from their detrimental effects. There are similar questions about neurofibrillary tangles. Their appearance seems to be disruptive to neuronal function, and their spread throughout the brain correlates even better with neurodegeneration and symptoms than the proliferation of amyloid plaques. Nevertheless, their specific contribution to the progression of AD remains uncertain.


Causes and treatments

Thus, there are a lot of questions still surrounding the disease process of AD. Similarly, uncertainty surrounds why the disease affects some people but not others. In a small fraction of AD cases, the disease can be linked to mutations in a handful of identified genes whose protein products are involved in the production of the Aβ peptides mentioned above. But for most patients, there is no clear genetic or environmental cause of the disease.

There are, however, some known risk factors. For example, a variant of a gene called Apolipoprotein E, or ApoE, is known to increase the risk of AD by 10 to 20 times. ApoE encodes for a protein that is involved with the transport of cholesterol and other lipids in the blood, but it’s not yet clear why it might be involved with AD risk. High lipid and cholesterol levels, however, have also been identified as possible risk factors for the disease.

There are a number of other potential risk factors, like smoking, repetitive head injuries, poor cardiovascular health, and diabetes. Researchers are still unsure, however, just how these factors might increase the chances of developing AD. And by far the greatest risk factor remains one that we can’t avoid: old age.

Thus, the causes of AD remain somewhat obscure, which perhaps makes it unsurprising that our treatments are similarly unsatisfying. The most common treatment for the disease involves drugs that raise levels of the neurotransmitter acetylcholine in the brain. Acetylcholine is thought to play important roles in learning and memory, and large repositories of acetylcholine neurons (e.g. the nucleus basalis) are decimated during AD—likely contributing to memory loss.

Drugs called acetylcholinesterase inhibitors (AChEIs) suppress the activity of an enzyme called acetylcholinesterase, whose normal function is to remove acetylcholine from the synapse—in effect reducing the effect the neurotransmitter can have at that synapse. By inhibiting acetylcholinesterase activity, AChEIs cause acetylcholine levels to increase. In the process, these drugs can lead to modest improvements in memory. Because the effects are modest, however, AChEIs are often not very useful in the later stages of the disease. In fact, clear improvement in cognitive symptoms is only seen in less than 10% of patients taking the drugs. Additionally, AChEIs can only treat the symptoms of AD—they don’t do anything to stop the disease from progressing.

There are a handful of other treatments, and many others being explored, but at this point we don’t have any means of halting the neurodegeneration that underlies the symptoms of AD. Thus, we remain somewhat limited in our ability to treat the disease. Hopefully, continued neuroscience research allows us to one day develop better methods of addressing the pathological changes that occur in the AD brain.


References (in addition to linked text above):

Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat. 1995;8(6):429-31.

Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his disease: a brief history. Neurol Sci. 2011 Apr;32(2):275-9. doi: 10.1007/s10072-010-0454-7.

Sanes JR, Jessell TM. The Aging Brain. In: Kandel ER, Schwartz JH, Jessell TM, eds. Principles of Neural Science, 5th ed. New York: McGraw-Hill.

YOUR BRAIN, EXPLAINED

Sleep. Memory. Pleasure. Fear. Language. We experience these things every day, but how do our brains create them? Your Brain, Explained is a personal tour around your gray matter. Building on neuroscientist Marc Dingman’s popular YouTube series, 2-Minute Neuroscience, this is a friendly, engaging introduction to the human brain and its quirks using real-life examples and Dingman’s own, hand-drawn illustrations.

  • Reading like a collection of detective stories, Your Brain, Explained combines classic cases in the history of neurology with findings stemming from the latest techniques used to probe the brain’s secrets. - Stanley Finger, PhD, Professor Emeritus of Psychological & Brain Sciences, Washington University (St. Louis), author, Origins of Neuroscience

  • An informative, accessible and engaging book for anyone who has even the slightest interest in how the brain works, but doesn’t know where to begin. - Dean Burnett, PhD, author, Happy Brain and Idiot Brain

  • Dingman weaves classic studies with modern research into easily digestible sections, to provide an excellent primer on the rapidly advancing field of neuroscience. - Moheb Costandi, author, Neuroplasticity and 50 Human Brain Ideas You Really Need to Know

  • ...a highly readable and accessible introduction to the operation of the brain and current issues in neuroscience... a wonderful introduction to the field. - Frank Amthor, PhD, Professor of Psychology, The University of Alabama at Birmingham, author, Neuroscience for Dummies

BIZARRE

This book shows a whole other side of how brains work by examining the most unusual behavior to emerge from the human brain. In it, you'll meet a woman who is afraid to take a shower because she fears her body will slip down the drain, a man who is convinced he is a cat, a woman who compulsively snacks on cigarette ashes, and many other unusual cases. As uncommon as they are, each of these cases has something important to teach us about everyday brain function.

  • A unique combination of storytelling and scientific explanation that appeals to the brain novice, the trained neuroscientist, and everyone in between. Dingman explores some of the most fascinating and mysterious expressions of human behavior in a style that is case study, dramatic novel, and introductory textbook all rolled into one. - Alison Kreisler, PhD, Neuroscience Instructor, California State University, San Marcos

  • Through case studies of both exceptional people as well as those with disorders, Bizarre takes us on a fascinating journey in which we learn more about what is going on in our skull. - William J. Ray, PhD, Emeritus Professor of Psychology, The Pennsylvania State University, author, Abnormal Psychology

  • Bizarre is a collection of stories of how the brain can create zombies, cult members, extra limbs, instant musicians, and overnight accents, to name a few of the mind-scratching cases. After reading this book, you will walk away with a greater appreciation for this bizarre organ. If you are a fan of Oliver Sacks' books, you're certain to be a fan of Dingman's Bizarre. - Allison M. Wilck, PhD, Researcher and Assistant Professor of Psychology, Eastern Mennonite University

  • Dingman brings the history of neuroscience back to life and weaves in contemporary ideas seamlessly. Readers will come along for the ride of a really interesting read and accidentally learn some neuroscience along the way. - Erin Kirschmann, PhD, Associate Professor of Psychology & Counseling, Immaculata University