Cerebral Hemispheres 2
NEUROSCIENTIFICALLY CHALLENGED

NEUROSCIENCE MADE SIMPLER

Know your brain: Thalamus


Where is the thalamus?

The thalami are the orange, oval-shaped shaped structures above.

The thalamus is a large, symmetrical (meaning there is one in each cerebral hemisphere) structure that makes up most of the mass of the diencephalon. A large number of pathways travel through the thalamus, including all of the sensory pathways other than those devoted to olfaction (smell).

What is the thalamus and what does it do?

The thalamus is often described as a relay station. This is because almost all sensory information (with the exception of smell) that proceeds to the cortex first stops in the thalamus before being sent on to its destination. The thalamus is subdivided into a number of nuclei that possess functional specializations for dealing with particular types of information. Sensory information thus travels to the thalamus and is routed to a nucleus tailored to dealing with that type of sensory data. Then, the information is sent from that nucleus to the appropriate area in the cortex where it is further processed.

For example, visual information from your retina travels to the lateral geniculate nucleus of the thalamus, which is specialized to handle visual information, before being sent on to the primary visual cortex (the main area for visual processing in the brain). A similar pathway through the thalamus can be delineated for all sensory information except smell. In fact, the majority of all of the signals (not just sensory) that pass to the cortex first pass through the thalamus.

Watch this 2-Minute Neuroscience video to learn more about the thalamus.

Thus, the thalamus has a major role as a gatekeeper for information on its way to the cortex, making sure that the information gets sent to the right place. However, to consider the thalamus as just a gatekeeper or relay station is selling this structure a bit short. A significant portion of the incoming fibers to the thalamus come not from sensory systems, but from the cortex itself. There are many connections to the thalamus that are involved in taking information from the cortex, modulating it, and then sending it back to the cortex. This means that the thalamus is an important part of cortical processing in general, and more than just a brief stop for signals on their way to the cortex.

With this in mind, it shouldn't be that surprising that the thalamus is involved in complex brain processes like sleep and wakefulness. It even is thought to play a crucial role in maintaining consciousness. So, far from just a relay station, the thalamus is an integral area involved in higher-order brain processing of various types.

Reference:

Sherman, S., & Guillery, R. (2002). The role of the thalamus in the flow of information to the cortex Philosophical Transactions of the Royal Society B: Biological Sciences, 357 (1428), 1695-1708 DOI: 10.1098/rstb.2002.1161

YOUR BRAIN, EXPLAINED

Sleep. Memory. Pleasure. Fear. Language. We experience these things every day, but how do our brains create them? Your Brain, Explained is a personal tour around your gray matter. Building on neuroscientist Marc Dingman’s popular YouTube series, 2-Minute Neuroscience, this is a friendly, engaging introduction to the human brain and its quirks using real-life examples and Dingman’s own, hand-drawn illustrations.

  • ...a highly readable and accessible introduction to the operation of the brain and current issues in neuroscience... a wonderful introduction to the field. - Frank Amthor, PhD, Professor of Psychology, The University of Alabama at Birmingham, author, Neuroscience for Dummies

  • An informative, accessible and engaging book for anyone who has even the slightest interest in how the brain works, but doesn’t know where to begin. - Dean Burnett, PhD, author, Happy Brain and Idiot Brain

  • Reading like a collection of detective stories, Your Brain, Explained combines classic cases in the history of neurology with findings stemming from the latest techniques used to probe the brain’s secrets. - Stanley Finger, PhD, Professor Emeritus of Psychological & Brain Sciences, Washington University (St. Louis), author, Origins of Neuroscience

  • Dingman weaves classic studies with modern research into easily digestible sections, to provide an excellent primer on the rapidly advancing field of neuroscience. - Moheb Costandi, author, Neuroplasticity and 50 Human Brain Ideas You Really Need to Know

BIZARRE

This book shows a whole other side of how brains work by examining the most unusual behavior to emerge from the human brain. In it, you'll meet a woman who is afraid to take a shower because she fears her body will slip down the drain, a man who is convinced he is a cat, a woman who compulsively snacks on cigarette ashes, and many other unusual cases. As uncommon as they are, each of these cases has something important to teach us about everyday brain function.

  • Through case studies of both exceptional people as well as those with disorders, Bizarre takes us on a fascinating journey in which we learn more about what is going on in our skull. - William J. Ray, PhD, Emeritus Professor of Psychology, The Pennsylvania State University, author, Abnormal Psychology

  • A unique combination of storytelling and scientific explanation that appeals to the brain novice, the trained neuroscientist, and everyone in between. Dingman explores some of the most fascinating and mysterious expressions of human behavior in a style that is case study, dramatic novel, and introductory textbook all rolled into one. - Alison Kreisler, PhD, Neuroscience Instructor, California State University, San Marcos

  • Bizarre is a collection of stories of how the brain can create zombies, cult members, extra limbs, instant musicians, and overnight accents, to name a few of the mind-scratching cases. After reading this book, you will walk away with a greater appreciation for this bizarre organ. If you are a fan of Oliver Sacks' books, you're certain to be a fan of Dingman's Bizarre. - Allison M. Wilck, PhD, Researcher and Assistant Professor of Psychology, Eastern Mennonite University

  • Dingman brings the history of neuroscience back to life and weaves in contemporary ideas seamlessly. Readers will come along for the ride of a really interesting read and accidentally learn some neuroscience along the way. - Erin Kirschmann, PhD, Associate Professor of Psychology & Counseling, Immaculata University