Cerebral Hemispheres 2
NEUROSCIENTIFICALLY CHALLENGED

NEUROSCIENCE MADE SIMPLER

Know Your Brain: Telencephalon


Where is the telencephalon?

The telencephalon highlighted red. The telencephalon not only includes the cerebral cortex (visible here) but also a large number of subcortical structures, pathways, etc.

The telencephalon is also known as the cerebrum, and it consists of the largest part of the brain (it makes up about 85% of the total weight of the brain). It contains the cerebral hemispheres, and thus includes the cerebral cortex and a number of other structures lying below it (subcortical structures), along with a variety of important fiber bundles like the corpus callosum. The inferior boundaries of the telencephalon are found at the diencephalon (e.g. thalamus and hypothalamus) and the brainstem. Posteriorly, it is bordered by the cerebellum.


What is the telencephalon and what does it do?

The telencephalon begins to emerge in embryonic development at about 5 weeks. At this time, the nervous system consists of tube-shaped piece of tissue called the neural tube. The neural tube begins to develop swellings (called vesicles) that will later develop into important structures in the nervous system. The swelling that forms at the farthest end of the neural tube is called the telencephalon (telencephalon is Greek for "far brain"). 

As development continues, the growth of the telencephalon far outpaces the growth of the other structures of the nervous system. The telencephalon begins to expand into two symmetrical structures that sit alongside one another at the very end of the neural tube; these will become the cerebral hemispheres. Initially, the surface of each cerebral hemisphere is smooth, but over the course of neural development it becomes more convoluted until it takes on the appearance of an adult brain with its many sulci and gyri. Thus, the cerebral cortex is part of the telencephalon---as are all of the divisions of the cerebral cortex like the prefrontal cortex, motor cortex, somatosensory cortex, occipital cortex, and so on. 

In addition to the cortex and its recognizable features, there are a large number of subcortical structures that are considered part of the telencephalon. These include the hippocampus, amygdala, and a majority of the regions included in the basal ganglia, among others. Also a multitude of major pathways traverse the telencephalon, such as the corpus callosum---a large bundle of fibers that connects the two cerebral hemispheres---and the internal capsule---another prominent collection of neurons that carries almost all information to and from the cerebral cortex.

The telencephalon is too large an area of the brain to try to link it with a function or short list of functions. It plays a role in most of our brain activity and thus is more analogous to an entire division of the nervous system than to a particular delimited brain structure.


References:

Haines DE. Fundamental Neuroscience for Basic and Clinical Applications. 4th ed. Philadelphia, PA: Elsevier; 2013.

Vanderah TW, Gould DJ. Nolte's The Human Brain. 7th ed. Philadelphia, PA: Elsevier; 2016.

YOUR BRAIN, EXPLAINED

Sleep. Memory. Pleasure. Fear. Language. We experience these things every day, but how do our brains create them? Your Brain, Explained is a personal tour around your gray matter. Building on neuroscientist Marc Dingman’s popular YouTube series, 2-Minute Neuroscience, this is a friendly, engaging introduction to the human brain and its quirks using real-life examples and Dingman’s own, hand-drawn illustrations.

  • ...a highly readable and accessible introduction to the operation of the brain and current issues in neuroscience... a wonderful introduction to the field. - Frank Amthor, PhD, Professor of Psychology, The University of Alabama at Birmingham, author, Neuroscience for Dummies

  • Reading like a collection of detective stories, Your Brain, Explained combines classic cases in the history of neurology with findings stemming from the latest techniques used to probe the brain’s secrets. - Stanley Finger, PhD, Professor Emeritus of Psychological & Brain Sciences, Washington University (St. Louis), author, Origins of Neuroscience

  • An informative, accessible and engaging book for anyone who has even the slightest interest in how the brain works, but doesn’t know where to begin. - Dean Burnett, PhD, author, Happy Brain and Idiot Brain

  • Dingman weaves classic studies with modern research into easily digestible sections, to provide an excellent primer on the rapidly advancing field of neuroscience. - Moheb Costandi, author, Neuroplasticity and 50 Human Brain Ideas You Really Need to Know

BIZARRE

This book shows a whole other side of how brains work by examining the most unusual behavior to emerge from the human brain. In it, you'll meet a woman who is afraid to take a shower because she fears her body will slip down the drain, a man who is convinced he is a cat, a woman who compulsively snacks on cigarette ashes, and many other unusual cases. As uncommon as they are, each of these cases has something important to teach us about everyday brain function.

  • Bizarre is a collection of stories of how the brain can create zombies, cult members, extra limbs, instant musicians, and overnight accents, to name a few of the mind-scratching cases. After reading this book, you will walk away with a greater appreciation for this bizarre organ. If you are a fan of Oliver Sacks' books, you're certain to be a fan of Dingman's Bizarre. - Allison M. Wilck, PhD, Researcher and Assistant Professor of Psychology, Eastern Mennonite University

  • Dingman brings the history of neuroscience back to life and weaves in contemporary ideas seamlessly. Readers will come along for the ride of a really interesting read and accidentally learn some neuroscience along the way. - Erin Kirschmann, PhD, Associate Professor of Psychology & Counseling, Immaculata University

  • Through case studies of both exceptional people as well as those with disorders, Bizarre takes us on a fascinating journey in which we learn more about what is going on in our skull. - William J. Ray, PhD, Emeritus Professor of Psychology, The Pennsylvania State University, author, Abnormal Psychology

  • A unique combination of storytelling and scientific explanation that appeals to the brain novice, the trained neuroscientist, and everyone in between. Dingman explores some of the most fascinating and mysterious expressions of human behavior in a style that is case study, dramatic novel, and introductory textbook all rolled into one. - Alison Kreisler, PhD, Neuroscience Instructor, California State University, San Marcos