Cerebral Hemispheres 2


Know Your Brain: Lyme Disease


There are a number of documented cases throughout history of what was probably the same disorder we now call Lyme disease. But Lyme disease didn't earn its name and become appreciated as a syndrome of its own until the 1970s, when two exasperated mothers from a town in southern Connecticut contacted the Connecticut State Department of Health and the Yale School of Medicine in search of help with an outbreak of (what seemed to be) arthritis that was primarily affecting children.

The outbreak spanned three towns in a small region of Connecticut: Old Lyme, Lyme, and East Haddam. By that point, 51 residents (including 39 children) of this region, which had a total population of only 12,000, had been diagnosed with some form of arthritis. 

Researchers from Yale and the Department of Health came to Lyme to investigate. One clue that emerged from the investigation was that 25% of the patients had noticed a skin lesion that formed several weeks before the symptoms began. Researchers began to find other similarities: most patients lived in wooded areas of town, patients often lived near one another, and the cases generally appeared in summer and early fall months. 

Based on these clues and descriptions of the rash that can occur after a tick bite, researchers began to suspect ticks were spreading the disease, which had come to be known as Lyme arthritis. The name would soon be changed to Lyme disease to reflect the fact that this was much more than just a type of arthritis.

In the 1980s it was confirmed that Lyme disease was spread by ticks when the bacterium responsible was discovered. The bacterium was named Borrelia burgdorferi in honor of Willy Burgdorfer, the scientist who discovered it (Borrelia refers to the genus of bacteria B. burgdorferi belongs to). Sometimes Lyme disease is also called Lyme borreliosis to indicate the involvement of Borrelia bacteria.

What is Lyme disease?

B. burgdorferi is spread by several species of hard-bodied ticks. In the United States, the disease is primarily spread by the blacklegged tick, or deer tick, and the western blacklegged tick. Ticks are known as hematophages, meaning they need blood to survive and move through their life cycle. Ticks generally become infected with B. burgdorferi in the first stage of their life cycle (the larval stage) when they bite infected small mammals or birds. Subsequently, when they feed on the blood of a new host, B. burgdorferi will pass from the tick to the new host. 

After their first blood meal, the tick enters its nymph stage, which is a part of the insect life cycle where the insect is not quite an adult but resembles the adult form. Nymphal ticks feed on small mammals or birds, which helps to spread B. burgdorferi among these populations. 

Nymphal ticks can also feed on humans, however, and they are the most common source of Lyme disease because they are very small at that stage (about the size of a poppy seed). Thus, they are more likely to go unnoticed while they are attached to a host, which allows them to stay attached for the amount of time it takes Lyme to be transmitted (usually at least 36 hours). Since humans aren't thought to spread B. burgdorferi among themselves or to other animals, they are considered a dead-end host for the bacteria (meaning there is no other host for the bacteria to go to after them). Adult ticks can feed on humans too, but are most commonly found on large animals in the wild, like deer.


The initial sign of B. burgdorferi infection in most patients is a round or oval, gradually expanding skin lesion at the location of the tick bite. At the same time, patients may experience flu-like symptoms like fatigue, headache, and fever. Over the following days or weeks, patients may develop multiple skin lesions that are widespread and generally similar in appearance to the first, but smaller.

In around 5% of patients, cardiac symptoms will occur several weeks after the first signs of disease. These symptoms can range from mild ventricular dysfunction to a fatal form of pancarditis, a term that refers to inflammation of the heart.

Several months after the initial signs of infection, about 60% of untreated patients begin to experience symptoms of arthritis like joint swelling and pain.


About 15% of untreated patients will also experience neurological symptoms several weeks to a few months after the infection begins, and in about 5% of untreated patients these symptoms may become chronic. The neurological effects vary but often manifest initially as meningitis, cranial neuritis, and/or radiculoneuritis. Meningitis is an inflammation of the meninges and may involve headaches, vomiting, neck stiffness, and other symptoms. Cranial neuritis involves inflammation of the cranial nerves and may cause symptoms like facial palsy/weakness, abnormalities in facial sensation, visual disturbances, tinnitus, vertigo, hearing loss, or other symptoms depending on the cranial nerve most affected. Radiculoneuritis involves an inflammation of the nerve roots; symptoms often include pain, numbness, and/or tingling sensations. 

Chronic neurological symptoms are diverse as well. Chronic effects may include a brain disorder that is linked to cognitive problems like difficulties with memory, verbal fluency, and processing of information. Encephalomyelitis, which is an inflammation of the brain and spinal cord, may also occur and lead to symptoms like confusion, psychiatric problems, a variety of movement difficulties, and seizures. Other psychiatric symptoms may appear too, including irritability, anxiety, depression, mood swings, sleep disturbances, sensory hyperarousal (i.e. extreme sensitivity to sensory stimuli like light or sound), and, in rare cases, hallucinations.

What causes the symptoms of Lyme disease?

While the symptoms of Lyme disease can be severe if untreated, they are not thought to be caused by any toxins or detrimental substances produced by B. burgdorferi, as is the case with some other particularly harmful bacteria. Unfortunately, what does cause the symptoms is still not completely clear. It is thought, however, that most of the problems likely are due to side effects of the immune system response to the presence of the bacterium. The primary immune response thought to be at play is inflammation, a general reaction your immune system has to any potentially harmful or foreign substance.

Inflammation involves the accumulation of immune system cells at a site of infection or damage, and the goal of the response is to repair damage and remove potentially dangerous foreign invaders. Inflammation, however, can also lead to secondary symptoms; a well-known example of this is when you experience redness, pain, and swelling around the area of an injury. Secondary effects of this sort are thought to contribute to the symptoms of Lyme disease ranging from the initial skin rash to joint problems.

The inflammation that occurs after B. burgdorferi infection seems to be disproportionate to the threat of the bacterium. In other words, the inflammatory response is stronger than it needs to be. Often, it even continues after the immune system has eliminated B. burgdorferi from the body. The reasons for this exaggerated response are unclear.

In the nervous system, the inflammatory response to B. burgdorferi may lead to secondary damage to neurons and glial cells. Additionally, there is evidence B. burgdorferi may adhere directly to brain capillaries, neurons, and glial cells, in the process causing changes in the permeability of blood vessels as well as damage (e.g. demyelination, or the deterioration of the myelin sheath of neurons) to cells. There is also some indication B. burgdorferi may be able to invade neurons and glial cells to cause additional damage. These direct effects, of course, may compound the damage caused by inflammation. In truth, however, these mechanisms for B. burgdorferi's pathogenic effects are poorly understood at this point. 


The immune system is capable of removing B. burgdorferi such that the bacterial numbers eventually fall even without treatment, and symptoms in most patients are mitigated over time. In untreated patients, however, the bacterium has the capability of remaining in the system at low levels for years, which can cause chronic symptoms.

Treatment primarily consists of antibiotics, and if begun early enough, the treatment is often completely effective. A small percentage of patients, however, may experience lingering effects, even after treatment. These patients are sometimes said to be suffering from post-treatment Lyme disease syndrome, or PTLDS. There is some controversy about these chronic symptoms, however, and how much we can say they are attributable to the infection with B. burgdorferi versus immune system abnormalities occurring post-infection or other factors altogether.

Reference (in addition to linked text above):

Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, Li X, Mead PS. Lyme borreliosis. Nat Rev Dis Primers. 2016 Dec 15;2:16090. doi: 10.1038/nrdp.2016.90.


Sleep. Memory. Pleasure. Fear. Language. We experience these things every day, but how do our brains create them? Your Brain, Explained is a personal tour around your gray matter. Building on neuroscientist Marc Dingman’s popular YouTube series, 2-Minute Neuroscience, this is a friendly, engaging introduction to the human brain and its quirks using real-life examples and Dingman’s own, hand-drawn illustrations.

  • Dingman weaves classic studies with modern research into easily digestible sections, to provide an excellent primer on the rapidly advancing field of neuroscience. - Moheb Costandi, author, Neuroplasticity and 50 Human Brain Ideas You Really Need to Know

  • An informative, accessible and engaging book for anyone who has even the slightest interest in how the brain works, but doesn’t know where to begin. - Dean Burnett, PhD, author, Happy Brain and Idiot Brain

  • Reading like a collection of detective stories, Your Brain, Explained combines classic cases in the history of neurology with findings stemming from the latest techniques used to probe the brain’s secrets. - Stanley Finger, PhD, Professor Emeritus of Psychological & Brain Sciences, Washington University (St. Louis), author, Origins of Neuroscience

  • ...a highly readable and accessible introduction to the operation of the brain and current issues in neuroscience... a wonderful introduction to the field. - Frank Amthor, PhD, Professor of Psychology, The University of Alabama at Birmingham, author, Neuroscience for Dummies


This book shows a whole other side of how brains work by examining the most unusual behavior to emerge from the human brain. In it, you'll meet a woman who is afraid to take a shower because she fears her body will slip down the drain, a man who is convinced he is a cat, a woman who compulsively snacks on cigarette ashes, and many other unusual cases. As uncommon as they are, each of these cases has something important to teach us about everyday brain function.

  • Through case studies of both exceptional people as well as those with disorders, Bizarre takes us on a fascinating journey in which we learn more about what is going on in our skull. - William J. Ray, PhD, Emeritus Professor of Psychology, The Pennsylvania State University, author, Abnormal Psychology

  • Bizarre is a collection of stories of how the brain can create zombies, cult members, extra limbs, instant musicians, and overnight accents, to name a few of the mind-scratching cases. After reading this book, you will walk away with a greater appreciation for this bizarre organ. If you are a fan of Oliver Sacks' books, you're certain to be a fan of Dingman's Bizarre. - Allison M. Wilck, PhD, Researcher and Assistant Professor of Psychology, Eastern Mennonite University

  • A unique combination of storytelling and scientific explanation that appeals to the brain novice, the trained neuroscientist, and everyone in between. Dingman explores some of the most fascinating and mysterious expressions of human behavior in a style that is case study, dramatic novel, and introductory textbook all rolled into one. - Alison Kreisler, PhD, Neuroscience Instructor, California State University, San Marcos

  • Dingman brings the history of neuroscience back to life and weaves in contemporary ideas seamlessly. Readers will come along for the ride of a really interesting read and accidentally learn some neuroscience along the way. - Erin Kirschmann, PhD, Associate Professor of Psychology & Counseling, Immaculata University