Cerebral Hemispheres 2
NEUROSCIENTIFICALLY CHALLENGED

NEUROSCIENCE MADE SIMPLER

Know Your Brain: Corticospinal Tract


Where is the corticospinal tract?

The corticospinal tract is a collection of axons that carry movement-related information from the cerebral cortex to the spinal cord. About half of these axons extend from neurons in the primary motor cortex, but others originate in the nonprimary motor areas of the brain as well as in regions of the parietal lobe like the somatosensory cortex. Corticospinal tract neurons project from these cortical areas down through the brainstem and into the spinal cord, where they synapse on neurons that directly control the contraction of skeletal muscle.

What is the corticospinal tract and what does it do?

The corticospinal tract is one of the major pathways for carrying movement-related information from the brain to the spinal cord. Signaling along the corticospinal tract seems to be involved in a variety of movements, including behaviors like walking and reaching, but it is especially important for fine finger movements like those that might be involved in writing, typing, or buttoning clothes. After selective damage to the corticospinal tract, patients are usually able to regain the ability to make crude movements (e.g. reaching) after a period of time, but they may be unable to fully recover the ability to make individual finger movements. This suggests other tracts are involved in most aspects of voluntary movement, and that they can generally compensate for the loss of corticospinal tract innervation; individual finger movements, however, may be a function the corticospinal tract is solely or primarily responsible for.

As mentioned above, the corticospinal tract originates in several cortical areas, with about half of the neurons that make up the tract coming from the primary motor cortex. The neurons that travel in the corticospinal tract are referred to as upper motor neurons; they synapse on neurons in the spinal cord called lower motor neurons, which make contact with skeletal muscle to cause muscle contraction.

The axons that travel in the corticospinal tract descend into the brainstem as part of large fiber bundles called the cerebral peduncles. The tract continues down into the medulla where it forms two large collections of axons known as the pyramids; the pyramids create visible ridges on the exterior surface of the brainstem. At the base of the pyramids, approximately 90% of the fibers in the corticospinal tract decussate, or cross over to the other side of the brainstem, in a bundle of axons called the pyramidal decussation. The fibers that have decussated form the lateral corticospinal tract; they will enter the spinal cord---and thus cause movement---on the side of the body that is contralateral to the hemisphere of the brain in which they originated. The other 10% of the corticospinal tract fibers will not decussate; they will continue down into the ipsilateral spinal cord; this branch of the corticospinal tract is known as the anterior (or ventral) corticospinal tract. Most of the axons of the anterior corticospinal tract will decussate in the spinal cord just before they synapse with lower motor neurons. The fibers of these two different branches of the corticospinal tract preferentially stimulate activity in different types of muscles. The lateral corticospinal tract primarily controls the movement of muscles in the limbs, while the anterior corticospinal tract is involved with movement of the muscles of the trunk, neck, and shoulders.

Watch this 2-Minute Neuroscience video to learn more about the corticospinal tract.

As they travel down to the spinal cord, corticospinal tract neurons send off many collateral fibers that make connections in a number of areas including the basal ganglia, thalamus, various sensory nuclei, etc. Additionally, corticospinal tract fibers terminate in various places in the spinal cord, including the posterior horn (which is normally involved in processing sensory information). These diverse connections suggest that the functions of the corticospinal tract are likely diverse as well, and that defining it as having movement as its sole function is an oversimplification.

When the upper motor neurons of the corticospinal tract are damaged, it can lead to a collection of deficits sometimes called upper motor neuron syndrome. When such an injury occurs, it often results in a state of paralysis or severe weakness immediately following the event, usually on the side of the body opposite to the location of the injury. After several days, function begins to return, but some abnormalities persist. The patient often displays spasticity, which involves increased muscle tone and hyperactive reflexes; motor control may also be decreased. As mentioned above, after damage to the corticospinal tract the ability to make crude movements generally returns but some deficit in fine finger movements may remain. Also, patients may display other abnormal reflexes; the best known of these is the Babinski sign. When the sole of the foot is stroked it generally causes the toes in adults to curl inwards; in someone with damage to the corticospinal tract the toes fan outwards, an abnormal movement referred to as the Babinski sign after neurologist Joseph Babinski. In infants, it is normal to observe the Babinski sign due to the fact that the corticospinal tract is not yet fully myelinated. Thus, the lack of a Babinski sign in infants is considered abnormal and potentially problematic, while the presence of a Babinski sign is adults is pathological and indicates possible corticospinal tract damage.

Reference:

Nolte J. The Human Brain: An Introduction to its Functional Anatomy. 6th ed. Philadelphia, PA. Elsevier; 2009.

YOUR BRAIN, EXPLAINED

Sleep. Memory. Pleasure. Fear. Language. We experience these things every day, but how do our brains create them? Your Brain, Explained is a personal tour around your gray matter. Building on neuroscientist Marc Dingman’s popular YouTube series, 2-Minute Neuroscience, this is a friendly, engaging introduction to the human brain and its quirks using real-life examples and Dingman’s own, hand-drawn illustrations.

  • Reading like a collection of detective stories, Your Brain, Explained combines classic cases in the history of neurology with findings stemming from the latest techniques used to probe the brain’s secrets. - Stanley Finger, PhD, Professor Emeritus of Psychological & Brain Sciences, Washington University (St. Louis), author, Origins of Neuroscience

  • An informative, accessible and engaging book for anyone who has even the slightest interest in how the brain works, but doesn’t know where to begin. - Dean Burnett, PhD, author, Happy Brain and Idiot Brain

  • Dingman weaves classic studies with modern research into easily digestible sections, to provide an excellent primer on the rapidly advancing field of neuroscience. - Moheb Costandi, author, Neuroplasticity and 50 Human Brain Ideas You Really Need to Know

  • ...a highly readable and accessible introduction to the operation of the brain and current issues in neuroscience... a wonderful introduction to the field. - Frank Amthor, PhD, Professor of Psychology, The University of Alabama at Birmingham, author, Neuroscience for Dummies

BIZARRE

This book shows a whole other side of how brains work by examining the most unusual behavior to emerge from the human brain. In it, you'll meet a woman who is afraid to take a shower because she fears her body will slip down the drain, a man who is convinced he is a cat, a woman who compulsively snacks on cigarette ashes, and many other unusual cases. As uncommon as they are, each of these cases has something important to teach us about everyday brain function.

  • Through case studies of both exceptional people as well as those with disorders, Bizarre takes us on a fascinating journey in which we learn more about what is going on in our skull. - William J. Ray, PhD, Emeritus Professor of Psychology, The Pennsylvania State University, author, Abnormal Psychology

  • Dingman brings the history of neuroscience back to life and weaves in contemporary ideas seamlessly. Readers will come along for the ride of a really interesting read and accidentally learn some neuroscience along the way. - Erin Kirschmann, PhD, Associate Professor of Psychology & Counseling, Immaculata University

  • Bizarre is a collection of stories of how the brain can create zombies, cult members, extra limbs, instant musicians, and overnight accents, to name a few of the mind-scratching cases. After reading this book, you will walk away with a greater appreciation for this bizarre organ. If you are a fan of Oliver Sacks' books, you're certain to be a fan of Dingman's Bizarre. - Allison M. Wilck, PhD, Researcher and Assistant Professor of Psychology, Eastern Mennonite University

  • A unique combination of storytelling and scientific explanation that appeals to the brain novice, the trained neuroscientist, and everyone in between. Dingman explores some of the most fascinating and mysterious expressions of human behavior in a style that is case study, dramatic novel, and introductory textbook all rolled into one. - Alison Kreisler, PhD, Neuroscience Instructor, California State University, San Marcos